A Pair of Interneurons Influences the Choice between Feeding and Locomotion in Drosophila
نویسندگان
چکیده
The decision to engage in one behavior often precludes the selection of others, suggesting cross-inhibition between incompatible behaviors. For example, the likelihood to initiate feeding might be influenced by an animal's commitment to other behaviors. Here, we examine the modulation of feeding behavior in the fruit fly, Drosophila melanogaster, and identify a pair of interneurons in the ventral nerve cord that is activated by stimulation of mechanosensory neurons and inhibits feeding initiation, suggesting that these neurons suppress feeding while the fly is walking. Conversely, inhibiting activity in these neurons promotes feeding initiation and inhibits locomotion. These studies demonstrate the mutual exclusivity between locomotion and feeding initiation in the fly, isolate interneurons that influence this behavioral choice, and provide a framework for studying the neural basis for behavioral exclusivity in Drosophila.
منابع مشابه
Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs
Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and feeding. It is likely that some neurons (e.g., motor neurons) are used in all these behaviors, but...
متن کاملIdentification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion
We use Drosophila larval locomotion as a model to elucidate the working principles of motor circuits. Larval locomotion is generated by rhythmic and sequential contractions of body-wall muscles from the posterior to anterior segments, which in turn are regulated by motor neurons present in the corresponding neuromeres. Motor neurons are known to receive both excitatory and inhibitory inputs, co...
متن کاملA Group of Segmental Premotor Interneurons Regulates the Speed of Axial Locomotion in Drosophila Larvae
BACKGROUND Animals control the speed of motion to meet behavioral demands. Yet, the underlying neuronal mechanisms remain poorly understood. Here we show that a class of segmentally arrayed local interneurons (period-positive median segmental interneurons, or PMSIs) regulates the speed of peristaltic locomotion in Drosophila larvae. RESULTS PMSIs formed glutamatergic synapses on motor neurons...
متن کاملIdentification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion
Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate thro...
متن کاملInfluences of temperature on hatching time, exogenous feeding onset, growth performance and survival of Cichlasoma nigrofasciatum larvae
This experiment was carried out to examine the effect of temperature on egg incubation period, exogenous feeding onset, growth and survival of the zebra cichlid , Cichlasoma nigrofasciatum larvae with two replications. Experiment was conducted in four groups of brood stocks with Four temperatures with two replications 22-24 °C, 24-26 °C, 26-28 °C and 28-30 °C. After ovulation brood stocks were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 79 شماره
صفحات -
تاریخ انتشار 2013